论文标题
样品最大的参数和非参数概率密度估计值的渐近性能
Asymptotic properties of parametric and nonparametric probability density estimators of sample maximum
论文作者
论文摘要
派生的三个概率密度函数的三个概率密度函数函数的渐近性属性是派生的,其中$ m $是样本大小$ n $的函数。估计器之一是通过近似的广义极值密度函数拟合的参数拟合。但是,参数拟合在有限的$ M $案例中被误指定。错误指定主要来自以下两个:差额$ m $和所选的块尺寸$ k $,以及差近似$ f _ {(m)} $ to的广义极值密度,该密度取决于$ m $和extreme Index $γ$。随着$γ$趋于零,近似的收敛速率变慢。作为替代方案,提出了两个非参数密度估计量,这些估计量没有规定。第一个是内核密度估计器的插件类型,第二个是基于块 - 最大的内核密度估计器。理论研究阐明了插件类型估计器的渐近收敛速率比基于块 - 最大的估计器快$γ> -1 $要快。对带宽选择的数值比较研究表明,插入式方法和交叉验证方法的性能取决于$γ$,并且完全可比。数值研究表明,通过两种方法,具有估计带宽的插件非参数估计器超过了参数拟合的估计器,尤其是对于$γ$接近零的分布,$ m $变大。
Asymptotic properties of three estimators of probability density function of sample maximum $f_{(m)}:=mfF^{m-1}$ are derived, where $m$ is a function of sample size $n$. One of the estimators is the parametrically fitted by the approximating generalized extreme value density function. However, the parametric fitting is misspecified in finite $m$ cases. The misspecification comes from mainly the following two: the difference $m$ and the selected block size $k$, and the poor approximation $f_{(m)}$ to the generalized extreme value density which depends on the magnitude of $m$ and the extreme index $γ$. The convergence rate of the approximation gets slower as $γ$ tends to zero. As alternatives two nonparametric density estimators are proposed which are free from the misspecification. The first is a plug-in type of kernel density estimator and the second is a block-maxima-based kernel density estimator. Theoretical study clarifies the asymptotic convergence rate of the plug-in type estimator is faster than the block-maxima-based estimator when $γ> -1$. A numerical comparative study on the bandwidth selection shows the performances of a plug-in approach and cross-validation approach depend on $γ$ and are totally comparable. Numerical study demonstrates that the plug-in nonparametric estimator with the estimated bandwidth by either approach overtakes the parametrically fitting estimator especially for distributions with $γ$ close to zero as $m$ gets large.