论文标题
多保真分层神经过程
Multi-fidelity Hierarchical Neural Processes
论文作者
论文摘要
科学和工程领域广泛使用计算机模拟。这些模拟通常以多个级别的复杂性运行,以平衡准确性和效率。多保真替代建模通过融合不同的仿真输出来降低计算成本。低保真模拟器产生的廉价数据可以与昂贵的高保真模拟器生成的有限的高质量数据结合使用。基于高斯流程的现有方法依赖于内核函数的强烈假设,并且几乎不能扩展到高维设置。我们提出了多保真层次神经过程(MF-HNP),这是一种用于多效率替代建模的统一神经潜在变量模型。 MF-HNP继承了神经过程的灵活性和可扩展性。潜在变量将不同的保真度水平之间的相关性从观测到潜在空间。鉴于潜在状态,跨忠诚度之间的预测是有条件独立的。它有助于减轻现有方法中的错误传播问题。 MF-HNP足够灵活,可以在不同的保真度水平上处理非巢高维数据,并具有不同的输入和输出尺寸。我们评估了MF-HNP关于流行病学和气候建模任务的评估,从而在准确性和不确定性估计方面取得了竞争性能。与仅具有低维度(<10)任务的Deep Gaussian过程相反,我们的方法在加速高维复杂模拟的巨大希望(流行病学建模超过7000个,对于气候建模45000)。
Science and engineering fields use computer simulation extensively. These simulations are often run at multiple levels of sophistication to balance accuracy and efficiency. Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs. Cheap data generated from low-fidelity simulators can be combined with limited high-quality data generated by an expensive high-fidelity simulator. Existing methods based on Gaussian processes rely on strong assumptions of the kernel functions and can hardly scale to high-dimensional settings. We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling. MF-HNP inherits the flexibility and scalability of Neural Processes. The latent variables transform the correlations among different fidelity levels from observations to latent space. The predictions across fidelities are conditionally independent given the latent states. It helps alleviate the error propagation issue in existing methods. MF-HNP is flexible enough to handle non-nested high dimensional data at different fidelity levels with varying input and output dimensions. We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation. In contrast to deep Gaussian Processes with only low-dimensional (< 10) tasks, our method shows great promise for speeding up high-dimensional complex simulations (over 7000 for epidemiology modeling and 45000 for climate modeling).