论文标题

对具有量子近似优化的沮丧的伊辛岛哈密顿人的模拟

Simulations of Frustrated Ising Hamiltonians with Quantum Approximate Optimization

论文作者

Lotshaw, Phillip C., Xu, Hanjing, Khalid, Bilal, Buchs, Gilles, Humble, Travis S., Banerjee, Arnab

论文摘要

新型磁性材料对于未来的技术进步很重要。基础状态特性的理论和数值计算对于理解这些材料至关重要,但是,计算复杂性限制了研究这些状态的常规方法。在这里,我们研究了一种在近期量子计算机上使用量子近似优化算法(QAOA)来制备材料接地态的替代方法。我们研究了在正方形,切斯特里山脉和三角形晶格的单位细胞上的经典自旋模型,在材料哈密顿材料中具有不同的场幅度和耦合。我们发现理论QAOA的成功概率与基态的结构之间的关系,表明仅需要一定数量的测量值($ \ \ lysSIM100 $)才能找到我们九型旋转hamiltonians的基础状态,即使是导致沮丧磁性的参数。我们进一步证明了对被困的离子量子计算机的计算方法,并成功地恢复了Shastry-Sutherland单位单元的每个接地状态,其概率接近理想的理论值。结果表明,QAOA对材料基态制备的生存能力在沮丧的Ising限制下,为迈向更大尺寸的重要第一步和更复杂的汉密尔顿人,量子计算优势可能对发展对新型材料的系统理解至关重要。

Novel magnetic materials are important for future technological advances. Theoretical and numerical calculations of ground state properties are essential in understanding these materials, however, computational complexity limits conventional methods for studying these states. Here we investigate an alternative approach to preparing materials ground states using the quantum approximate optimization algorithm (QAOA) on near-term quantum computers. We study classical Ising spin models on unit cells of square, Shastry-Sutherland, and triangular lattices, with varying field amplitudes and couplings in the material Hamiltonian. We find relationships between the theoretical QAOA success probability and the structure of the ground state, indicating that only a modest number of measurements ($\lesssim100$) are needed to find the ground state of our nine-spin Hamiltonians, even for parameters leading to frustrated magnetism. We further demonstrate the approach in calculations on a trapped-ion quantum computer and succeed in recovering each ground state of the Shastry-Sutherland unit cell with probabilities close to ideal theoretical values. The results demonstrate the viability of QAOA for materials ground state preparation in the frustrated Ising limit, giving important first steps towards larger sizes and more complex Hamiltonians where quantum computational advantage may prove essential in developing a systematic understanding of novel materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源