论文标题

电导中的解密量子指纹

Deciphering quantum fingerprints in electric conductance

论文作者

Daimon, Shunsuke, Tsunekawa, Kakeru, Kawakami, Shinji, Kikkawa, Takashi, Ramos, Rafael, Oyanagi, Koichi, Ohtsuki, Tomi, Saitoh, Eiji

论文摘要

当在低温下测量纳米尺寸金属的电导率时,它通常表现出复杂但可重现的图案,这是外部磁场的函数,在电导中称为量子指纹。这种复杂的模式是由于传导电子的量子力学干扰引起的。当热干扰微弱并且电子的连贯性在整个样品上延伸时,量子干扰模式反映了微观结构,例如晶体缺陷和样品的形状,从而引起复杂的干扰。尽管干扰模式带有这样的微观信息,但它看起来是如此随机,以至于尚未分析。在这里,我们表明机器学习使我们能够破译量子指纹。通过使用生成机器学习,磁性传统中的指纹模式被证明被转录为样品中电子波功能强度(WIS)的空间图像。输出WIS揭示了传导电子的量子干扰状态以及样品形状。目前的结果增强了人类识别量子状态的能力,并应利用量子指纹来允许材料中量子纳米结构的显微镜。

When the electric conductance of a nano-sized metal is measured at low temperatures, it often exhibits complex but reproducible patterns as a function of external magnetic fields, called quantum fingerprints in electric conductance. Such complex patterns are due to quantum-mechanical interference of conduction electrons; when thermal disturbance is feeble and coherence of the electrons extends all over the sample, the quantum interference pattern reflects microscopic structures, such as crystalline defects and the shape of the sample, giving rise to complicated interference. Although the interference pattern carries such microscopic information, it looks so random that it has not been analysed. Here we show that machine learning allows us to decipher quantum fingerprints; fingerprint patterns in magneto-conductance are shown to be transcribed into spatial images of electron wave function intensities (WIs) in a sample by using generative machine learning. The output WIs reveal quantum interference states of conduction electrons, as well as sample shapes. The present result augments the human ability to identify quantum states, and it should allow microscopy of quantum nanostructures in materials by making use of quantum fingerprints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源