论文标题
基于价值函数的基于双重参数选择问题的符号差异算法
Value Function Based Difference-of-Convex Algorithm for Bilevel Hyperparameter Selection Problems
论文作者
论文摘要
基于梯度的高参数调整的优化方法可确保理论收敛到固定解决方案时,对于固定的上层变量值,双光线程序的下层级别强烈凸(LLSC)和平滑(LLS)。对于在许多机器学习算法中调整超参数引起的双重程序而言,这种情况不满足。在这项工作中,我们开发了一种基于不符合性(VF-IDCA)的基于依次收敛的值函数算法。我们表明,该算法从一系列的超级参数调整应用程序中实现了无LLSC和LLS假设的固定解决方案。我们的广泛实验证实了我们的理论发现,并表明,当应用于调整超参数时,提出的VF-IDCA会产生较高的性能。
Gradient-based optimization methods for hyperparameter tuning guarantee theoretical convergence to stationary solutions when for fixed upper-level variable values, the lower level of the bilevel program is strongly convex (LLSC) and smooth (LLS). This condition is not satisfied for bilevel programs arising from tuning hyperparameters in many machine learning algorithms. In this work, we develop a sequentially convergent Value Function based Difference-of-Convex Algorithm with inexactness (VF-iDCA). We show that this algorithm achieves stationary solutions without LLSC and LLS assumptions for bilevel programs from a broad class of hyperparameter tuning applications. Our extensive experiments confirm our theoretical findings and show that the proposed VF-iDCA yields superior performance when applied to tune hyperparameters.