论文标题
开处方$ q $ culvature in Conical Ginularive的均匀歧管上的处方
Prescribing $Q$-curvature on even-dimensional manifolds with conical singularities
论文作者
论文摘要
在一笔200万美元的$维封闭流形上,我们调查了具有圆锥形奇点的规定的$ q $ curvature指标的存在。我们在这里介绍了超临界制度的一般存在和多样性。为此,我们首先对与该问题关联的200万美元$ th级PDE进行了爆炸分析,然后应用最低最大型号的差异参数。对于$ m> 1 $,这似乎是与球体不同的超临界圆锥歧管的第一个存在结果。
On a $2m$-dimensional closed manifold we investigate the existence of prescribed $Q$-curvature metrics with conical singularities. We present here a general existence and multiplicity result in the supercritical regime. To this end, we first carry out a blow-up analysis of a $2m$th-order PDE associated to the problem and then apply a variational argument of min-max type. For $m>1$, this seems to be the first existence result for supercritical conic manifolds different from the sphere.