论文标题
虚拟的嵌入和自我监督学习的自我矛盾
Virtual embeddings and self-consistency for self-supervised learning
论文作者
论文摘要
由于培训监督学习模型的高成本和数据限制,自我监督的学习(SSL)最近引起了很多关注。 SSL中的当前范式是利用输入空间的数据增强来创建相同图像的不同视图并训练模型以最大程度地提高相似图像之间的表示,并最大程度地减少它们的不同图像。尽管这种方法达到了最新的(SOTA),但仍会实现各种下游任务,但它仍然有机会调查潜在的空间增加。本文提出了Trimix,这是SSL的一种新颖概念,它通过线性插值来生成虚拟嵌入,从而为模型提供了新的表示。我们的策略着重于培训模型,以从虚拟的嵌入中提取原始嵌入,因此可以更好地表示。此外,我们提出了一个自矛盾术语,可以提高虚拟嵌入和实际嵌入之间的一致性。我们在八个基准数据集上验证了Trimix,这些数据集由天然和医学图像组成,提高了2.71%和0.41%,比第二种数据类型的第二好的模型好。此外,我们的方法表现优于半监督学习中的当前方法,尤其是在低数据制度中。此外,我们的预训练模型显示出更好的传输到其他数据集。
Self-supervised Learning (SSL) has recently gained much attention due to the high cost and data limitation in the training of supervised learning models. The current paradigm in the SSL is to utilize data augmentation at the input space to create different views of the same images and train a model to maximize the representations between similar images and minimize them for different ones. While this approach achieves state-of-the-art (SOTA) results in various downstream tasks, it still lakes the opportunity to investigate the latent space augmentation. This paper proposes TriMix, a novel concept for SSL that generates virtual embeddings through linear interpolation of the data, thus providing the model with novel representations. Our strategy focuses on training the model to extract the original embeddings from virtual ones, hence, better representation learning. Additionally, we propose a self-consistency term that improves the consistency between the virtual and actual embeddings. We validate TriMix on eight benchmark datasets consisting of natural and medical images with an improvement of 2.71% and 0.41% better than the second-best models for both data types. Further, our approach outperformed the current methods in semi-supervised learning, particularly in low data regimes. Besides, our pre-trained models showed better transfer to other datasets.