论文标题

用于零雷诺数的局部旋转的流体动力纤维体理论

A hydrodynamic slender-body theory for local rotation at zero Reynolds number

论文作者

Walker, Benjamin J., Ishimoto, Kenta, Gaffney, Eamonn A.

论文摘要

细长的物体在显微镜流问题中很常见,从软变形传感器到诸如鞭毛和纤毛等生物细丝。尽管许多研究都集中在这些细长的身体的局部翻译运动上,但对局部旋转的关注很少,即使它可能是运动的主要组成部分。在这项研究中,我们探索了一个经典动机的Ansatz,用于通过超塑的Rotlet奇异性围绕旋转细长的身体流动,这使我们构成了一种替代的Ansatz,该Ansatz既可以说明翻译和旋转。通过数值示例支持的渐近分析,我们确定了这些流动ansatzes对于捕获细长体表面的流体速度的适用性,假设物体的局部轴对称性,但允许横截面半径随着arclenge而变化。除了正式地证明所呈现的苗条体ansatzes之外,该分析还揭示了局部角速度与施加在体内的扭矩之间的明显简单关系,我们将其称为电阻扭矩理论。尽管让人联想到经典的电阻理论,但即使存在翻译,这种局部关系在细长体形的纵横比中也具有代数准确性,并且每当局部旋转在领先的渐近顺序下有效地表面速度时,也需要有效。

Slender objects are commonplace in microscale flow problems, from soft deformable sensors to biological filaments such as flagella and cilia. Whilst much research has focussed on the local translational motion of these slender bodies, relatively little attention has been given to local rotation, even though it can be the dominant component of motion. In this study, we explore a classically motivated ansatz for the Stokes flow around a rotating slender body via superposed rotlet singularities, which leads us to pose an alternative ansatz that accounts for both translation and rotation. Through an asymptotic analysis that is supported by numerical examples, we determine the suitability of these flow ansatzes for capturing the fluid velocity at the surface of a slender body, assuming local axisymmetry of the object but allowing the cross-sectional radius to vary with arclength. In addition to formally justifying the presented slender-body ansatzes, this analysis reveals a markedly simple relation between the local angular velocity and the torque exerted on the body, which we term resistive torque theory. Though reminiscent of classical resistive force theories, this local relation is found to be algebraically accurate in the slender-body aspect ratio, even when translation is present, and is valid and required whenever local rotation contributes to the surface velocity at leading asymptotic order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源