论文标题
在散装块扩展上,用于单肌缺陷
On the bulk block expansion for a monodromy defect
论文作者
论文摘要
对于自由场平坦的单片缺陷,相关器的有限部分的公式是以$(1-x)$(1-x)$和$(1- \ ol x)$的双功率系列获得的,其中$ x $和$ x $和$ \ ol x $是LightCone坐标。它采用$(1-x)$的系列的特定形式,具有$ 1- \ ol x $的系数有限的高几幅功能,并通过散装块扩展确定。因此,发现$(1-x)^n(1- \ ol x)^m $项的系数的简单表达式被发现是通量和尺寸的显式函数。提出了一些典型的示例。一种转换允许将块块扩展写作作为Appell $ F_3 $函数,具有简化的后果。
For a free--field flat monodromy defect, a formula for the finite part of the correlator is obtained as a double power series in $(1-x)$ and $(1-\ol x)$ where $x$ and $\ol x$ are lightcone coordinates. It takes the particular form of a series in $(1-x)$ with coefficients finite sums of hypergeometric functions of $1-\ol x$ and is identified with a bulk block expansion. A simple expression for the coefficient of the $(1-x)^n(1-\ol x)^m$ term is thereby found as an explicit function of the flux and dimension. Some typical examples are presented.A transformation allows the bulk block expansion to be written as an Appell $F_3$ function which has simplifying consequences.