论文标题
分布式的对抗训练以稳健地稳定深度神经网络
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale
论文作者
论文摘要
当前的深层神经网络(DNN)容易受到对抗性攻击的影响,在这种攻击中,对输入的对抗扰动可以改变或操纵分类。为了防止这种攻击,已证明一种有效而流行的方法,称为对抗性训练(AT),可通过一种最小的最大马克斯强大的训练方法来减轻对抗攻击的负面影响。尽管有效,但尚不清楚它是否可以成功地适应分布式学习环境。在多台计算机上的分布式优化的功能使我们能够扩展大型型号和数据集的强大培训。在此刺激下,我们提出了分布式的对抗训练(DAT),这是在多台机器上实施的大批量对抗训练框架。我们表明DAT是一般的,它支持对标记和未标记的数据,多种类型的攻击生成方法以及梯度压缩操作的培训,该操作偏爱分布式优化。从理论上讲,我们在优化理论中的标准条件下提供了DAT与一般非convex设置中一阶固定点的收敛速率。从经验上讲,我们证明DAT要么匹配或胜过最先进的稳健精度,并实现了优美的训练速度(例如,在ImageNet下的Resnet-50上)。代码可在https://github.com/dat-2022/dat上找到。
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification. To defend against such attacks, an effective and popular approach, known as adversarial training (AT), has been shown to mitigate the negative impact of adversarial attacks by virtue of a min-max robust training method. While effective, it remains unclear whether it can successfully be adapted to the distributed learning context. The power of distributed optimization over multiple machines enables us to scale up robust training over large models and datasets. Spurred by that, we propose distributed adversarial training (DAT), a large-batch adversarial training framework implemented over multiple machines. We show that DAT is general, which supports training over labeled and unlabeled data, multiple types of attack generation methods, and gradient compression operations favored for distributed optimization. Theoretically, we provide, under standard conditions in the optimization theory, the convergence rate of DAT to the first-order stationary points in general non-convex settings. Empirically, we demonstrate that DAT either matches or outperforms state-of-the-art robust accuracies and achieves a graceful training speedup (e.g., on ResNet-50 under ImageNet). Codes are available at https://github.com/dat-2022/dat.