论文标题
限制量子优化,以在被困的离子量子计算机上进行提取性摘要
Constrained Quantum Optimization for Extractive Summarization on a Trapped-ion Quantum Computer
论文作者
论文摘要
意识到近期量子计算机解决与行业相关的约束优化问题的潜力是量子优势的有前途的途径。在这项工作中,我们考虑了挖掘性摘要的约束优化问题,并证明了量子优化算法的最大到期执行,该算法本质上保留了对量子硬件的约束。我们报告了量子交替的操作员ANSATZ算法,其中包含限制性 - 重量XY混合器(XY-QAOA)上的量子量子计算机。我们成功执行XY-QAOA循环,该电路将量子演变限制为构成子空间,最多使用20个Quinbits和多达159的两倍的门深度。如果在量子之间的质量和质量之间的质量,我们可以将约束直接编码到量子电路中直接编码限制的必要性。我们表明,这种权衡使选择良好的参数总体上很难。我们将XY-QAOA与层变化量子本算法算法进行比较,该算法具有高度表达性的恒定深度电路和量子近似优化算法。我们讨论了算法的各自的权衡以及对它们在近期量子硬件上的执行的影响。
Realizing the potential of near-term quantum computers to solve industry-relevant constrained-optimization problems is a promising path to quantum advantage. In this work, we consider the extractive summarization constrained-optimization problem and demonstrate the largest-to-date execution of a quantum optimization algorithm that natively preserves constraints on quantum hardware. We report results with the Quantum Alternating Operator Ansatz algorithm with a Hamming-weight-preserving XY mixer (XY-QAOA) on trapped-ion quantum computer. We successfully execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159. We demonstrate the necessity of directly encoding the constraints into the quantum circuit by showing the trade-off between the in-constraint probability and the quality of the solution that is implicit if unconstrained quantum optimization methods are used. We show that this trade-off makes choosing good parameters difficult in general. We compare XY-QAOA to the Layer Variational Quantum Eigensolver algorithm, which has a highly expressive constant-depth circuit, and the Quantum Approximate Optimization Algorithm. We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware.