论文标题

Gaia数据版本3。可变性处理和分析的摘要

Gaia Data Release 3. Summary of the variability processing and analysis

论文作者

Eyer, L., Audard, M., Holl, B., Rimoldini, L., Carnerero, M. I., Clementini, G., De Ridder, J., Distefano, E., Evans, D. W., Gavras, P., Gomel, R., Lebzelter, T., Marton, G., Mowlavi, N., Panahi, A., Ripepi, V., Wyrzykowski, L., Nienartowicz, K., de Fombelle, G. Jevardat, Lecoeur-Taibi, I., Rohrbasser, L., Riello, M., Garcia-Lario, P., Lanzafame, A. C., Mazeh, T., Raiteri, C. M., Zucker, S., Abraham, P., Aerts, C., Aguado, J. J., Anderson, R. I., Bashi, D., Binnenfeld, A., Faigler, S., Garofalo, A., Karbevska, L., Kospal, A., Kruszynska, K., Kun, M., Lanza, A. F., Leccia, S., Marconi, M., Messina, S., Molinaro, R., Molnar, L., Muraveva, T., Musella, I., Nagy, Z., Pagano, I., Palaversa, L., Plachy, E., Rybicki, K. A., Shahaf, S., Szabados, L., Szegedi-Elek, E., Trabucchi, M., Barblan, F., Roelens, M.

论文摘要

语境。盖亚(Gaia)自2014年以来一直从事操作。第三盖亚数据释放从2020年的早期数据发布(EDR3)扩展,通过提供34个月的多上观测观测值,使我们能够探究,表征和分类系统地天体可变现象。 目标。我们介绍了为Gaia DR3完成的18亿源的光度和光谱时间序列的可变性处理和分析的摘要。 方法。我们使用统计和机器学习方法来表征和分类变量源。培训集是根据主要发布的可变星目录的全球修订版构建的。对于一部分课程,进行了具体的详细研究,以确认其类成员身份并得出适合考虑类别的特殊性的参数。 结果。总共将1,050万个对象鉴定为GAIA DR3的变量,并且在G,GBP和GRP中具有相关时间序列,在某些情况下是径向速度时间序列。 DR3可变源细分为950万个可变恒星和100万个活跃的银河核/类星体。此外,由于这些对象的范围,监督分类确定了250万个星系。 DR3存档中的可变性分析输出相当于17个表包含365个参数。我们发布35种类型和子类型的可变对象。对于11个变量类型,发布了其他特定对象参数。提供了大多数可变性类别的估计完整性和污染概述。 结论。多亏了Gaia,我们介绍了基于相干光度,天文和光谱数据的最大全天空变异性分析。后来的Gaia数据发行将在时间序列和观察次数的范围内两倍以上,从而使将来有更丰富的目录。

Context. Gaia has been in operations since 2014. The third Gaia data release expands from the early data release (EDR3) in 2020 by providing 34 months of multi-epoch observations that allowed us to probe, characterise and classify systematically celestial variable phenomena. Aims. We present a summary of the variability processing and analysis of the photometric and spectroscopic time series of 1.8 billion sources done for Gaia DR3. Methods. We used statistical and Machine Learning methods to characterise and classify the variable sources. Training sets were built from a global revision of major published variable star catalogues. For a subset of classes, specific detailed studies were conducted to confirm their class membership and to derive parameters that are adapted to the peculiarity of the considered class. Results. In total, 10.5 million objects are identified as variable in Gaia DR3 and have associated time series in G, GBP, and GRP and, in some cases, radial velocity time series. The DR3 variable sources subdivide into 9.5 million variable stars and 1 million Active Galactic Nuclei/Quasars. In addition, supervised classification identified 2.5 million galaxies thanks to spurious variability induced by the extent of these objects. The variability analysis output in the DR3 archive amounts to 17 tables containing a total of 365 parameters. We publish 35 types and sub-types of variable objects. For 11 variable types, additional specific object parameters are published. An overview of the estimated completeness and contamination of most variability classes is provided. Conclusions. Thanks to Gaia we present the largest whole-sky variability analysis based on coherent photometric, astrometric, and spectroscopic data. Later Gaia data releases will more than double the span of time series and the number of observations, thus allowing for an even richer catalogue in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源