论文标题

超新星尘埃演变由深海60FE时间历史探测

Supernova Dust Evolution Probed by Deep-sea 60Fe Time History

论文作者

Ertel, Adrienne F., Fry, Brian J., Fields, Brian D., Ellis, John

论文摘要

关于直播的60fe($ t_ {1/2} = 2.6 \ \ rm myr $),有大量数据,其中有深海沉积物,Lunar Regolith,Regolith,Regolith,宇宙射线和南极雪,被解释为起源于至少两个近乎近乎近地的超级noveae的最近爆炸。我们使用深海沉积物中的60FE配置文件来估计从$ \ sim 3 $ MYR以前开始的超新星碎片沉积的时间尺度。可用的数据允许各种不同的配置文件功能,但是在所有数据合并时,最佳拟合60FE脉冲持续时间均为$> 1.6 $ MYR。这个时间表远远超过了$ \ lyssim 0.1 $ Myr脉冲,如果将60FE夹在超新星爆炸波等离子体中,这将是预期的。我们将长信号持续时间解释为以超新星粉尘形式到达的证据,其动力学与爆炸等离子体的演变相结合。在此框架中,$> 1.6 $的Myr是由于阻力力而导致的尘埃。这种情况与Fry等人的模拟一致。 Al(2020),其中尘埃被磁陷在超新星残留物中,从而限制在磁场较低的超新星弹出的残留区域周围。这张图片自然与宇宙射线注入耐火元件的模型是溅射的超新星粉尘晶粒,这意味着最近在宇宙射线中的60FE检测量补充了生存的晶粒碎片,这些晶粒生存到达地球和月亮。最后,我们提出了这种情况的可能测试。

There is a wealth of data on live, undecayed 60Fe ($t_{1/2} = 2.6 \ \rm Myr$) in deep-sea deposits, the lunar regolith, cosmic rays, and Antarctic snow, which is interpreted as originating from the recent explosions of at least two near-Earth supernovae. We use the 60Fe profiles in deep-sea sediments to estimate the timescale of supernova debris deposition beginning $\sim 3$ Myr ago. The available data admits a variety of different profile functions, but in all cases the best-fit 60Fe pulse durations are $>1.6$ Myr when all the data is combined. This timescale far exceeds the $\lesssim 0.1$ Myr pulse that would be expected if 60Fe was entrained in the supernova blast wave plasma. We interpret the long signal duration as evidence that 60Fe arrives in the form of supernova dust, whose dynamics are separate from but coupled to the evolution of the blast plasma. In this framework, the $>1.6$ Myr is that for dust stopping due to drag forces. This scenario is consistent with the simulations in Fry et. al (2020), where the dust is magnetically trapped in supernova remnants and thereby confined around regions of the remnant dominated by supernova ejects, where magnetic fields are low. This picture fits naturally with models of cosmic-ray injection of refractory elements as sputtered supernova dust grains and implies that the recent 60Fe detections in cosmic rays complement the fragments of grains that survived to arrive on the Earth and Moon. Finally, we present possible tests for this scenario.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源