论文标题
可观察的窗口可用于从Lattice QCD中对MUON $ G-2 $贡献的Hadronic真空两极分化
Window observable for the hadronic vacuum polarization contribution to the muon $g-2$ from lattice QCD
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Euclidean time windows in the integral representation of the hadronic vacuum polarization contribution to the muon $g-2$ serve to test the consistency of lattice calculations and may help in tracing the origins of a potential tension between lattice and data-driven evaluations. In this paper, we present results for the intermediate time window observable computed using O($a$) improved Wilson fermions at six values of the lattice spacings below 0.1\,fm and pion masses down to the physical value. Using two different sets of improvement coefficients in the definitions of the local and conserved vector currents, we perform a detailed scaling study which results in a fully controlled extrapolation to the continuum limit without any additional treatment of the data, except for the inclusion of finite-volume corrections. To determine the latter, we use a combination of the method of Hansen and Patella and the Meyer-Lellouch-Lüscher procedure employing the Gounaris-Sakurai parameterization for the pion form factor. We correct our results for isospin-breaking effects via the perturbative expansion of QCD+QED around the isosymmetric theory. Our result at the physical point is $a_μ^{\mathrm{win}}=(237.30\pm0.79_{\rm stat}\pm1.22_{\rm syst})\times10^{-10}$, where the systematic error includes an estimate of the uncertainty due to the quenched charm quark in our calculation. Our result displays a tension of 3.9$σ$ with a recent evaluation of $a_μ^{\mathrm{win}}$ based on the data-driven method.