论文标题
动态Keldysh模型的七个ETUDES
Seven Etudes on dynamical Keldysh Model
论文作者
论文摘要
我们对一个模型家族进行了全面的教学讨论,描述了多组分非马克维亚高斯随机场中单个粒子的传播。我们报告了单粒子绿色功能,自能力,顶点部分和t-matrix的一些确切结果。这些结果基于dyson方程与病房身份的封闭形式解决方案。讨论了解决方案的分析特性。此外,我们使用泰勒(Taylor)扩张系数之间的复发关系来描述绿色功能的Feynman图和自我能力和顶点的骨骼图的组合。得出了大N极限中骨骼图数量的渐近方程。最后,我们考虑通过复杂的量子点实验对量子传输中多组分高斯随机潜力的可能实现。
We present a comprehensive pedagogical discussion of a family of models describing the propagation of a single particle in a multicomponent non-Markovian Gaussian random field. We report some exact results for single-particle Green's functions, self-energy, vertex part and T-matrix. These results are based on a closed form solution of the Dyson equation combined with the Ward identity. Analytical properties of the solution are discussed. Further we describe the combinatorics of the Feynman diagrams for the Green's function and the skeleton diagrams for the self-energy and vertex, using recurrence relations between the Taylor expansion coefficients of the self-energy. Asymptotically exact equations for the number of skeleton diagrams in the limit of large N are derived. Finally, we consider possible realizations of a multicomponent Gaussian random potential in quantum transport via complex quantum dot experiments.