论文标题
三维海森贝格组中的最小圆柱体
Minimal cylinders in the three-dimensional Heisenberg group
论文作者
论文摘要
我们使用普遍的Weierstrass类型表示,研究了三维的海森堡组$ {\ rm nil} _3 $中的最小圆柱体。我们以两个具有相同签名区域的封闭平面曲线对来表征所有非垂直最小圆柱体。此外,作为构造的副产品,还可以获得空格类似的CMC圆柱体。
We study minimal cylinders in the three-dimensional Heisenberg group ${\rm Nil}_3$ using the generalized Weierstrass type representation, the so-called loop group method. We characterize all non-vertical minimal cylinders in terms of pairs of two closed plane curves which have the same signed area. Moreover, as a byproduct of the construction, spacelike CMC cylinders can also be obtained.