论文标题

基于通用传感器的跨域活动识别的语义歧视混合

Semantic-Discriminative Mixup for Generalizable Sensor-based Cross-domain Activity Recognition

论文作者

Lu, Wang, Wang, Jindong, Chen, Yiqiang, Pan, Sinno Jialin, Hu, Chunyu, Qin, Xin

论文摘要

收集足够标记的数据以建立人类活动识别(HAR)模型是昂贵且耗时的。对现有数据的培训通常会使该模型偏向于培训数据的分布,因此该模型可能会在具有不同分布的测试数据上执行的性能。尽管现有的转移学习和域适应性的努力试图解决上述问题,但他们仍然需要访问目标域上的未标记数据,这在实际情况下可能是不可能的。很少有作品注意培训一个模型,该模型可以很好地推广到HAR看不见的目标域。在本文中,我们提出了一种新的方法,称为可推广跨域HAR的语义歧视混合(SDMIX)。首先,我们介绍了语义感知的混音,该混音考虑了活动语义范围,以克服域差异带来的语义不一致。其次,我们引入了较大的边缘损失,以增强混合歧视的歧视,以防止虚拟标签带来的错误分类。在五个公共数据集上进行的综合概括实验表明,我们的SDMIX显然优于最先进的方法,其平均精度为6%的交叉人物,交叉数据库和交叉位置HAR。

It is expensive and time-consuming to collect sufficient labeled data to build human activity recognition (HAR) models. Training on existing data often makes the model biased towards the distribution of the training data, thus the model might perform terribly on test data with different distributions. Although existing efforts on transfer learning and domain adaptation try to solve the above problem, they still need access to unlabeled data on the target domain, which may not be possible in real scenarios. Few works pay attention to training a model that can generalize well to unseen target domains for HAR. In this paper, we propose a novel method called Semantic-Discriminative Mixup (SDMix) for generalizable cross-domain HAR. Firstly, we introduce semantic-aware Mixup that considers the activity semantic ranges to overcome the semantic inconsistency brought by domain differences. Secondly, we introduce the large margin loss to enhance the discrimination of Mixup to prevent misclassification brought by noisy virtual labels. Comprehensive generalization experiments on five public datasets demonstrate that our SDMix substantially outperforms the state-of-the-art approaches with 6% average accuracy improvement on cross-person, cross-dataset, and cross-position HAR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源