论文标题

物理驱动的宠物/MRI的深度学习

Physics-driven Deep Learning for PET/MRI

论文作者

Rajagopal, Abhejit, Leynes, Andrew P., Dwork, Nicholas, Scholey, Jessica E., Hope, Thomas A., Larson, Peder E. Z.

论文摘要

在本文中,我们回顾了同时正电子发射断层扫描(PET) /磁共振成像(MRI)系统的物理和数据驱动的重建技术,这些技术在癌症,神经系统疾病和心脏病方面具有显着优势。这些重建方法利用了结构或统计的先验,以及基于物理学的宠物系统响应的描述。但是,由于正向问题的嵌套表示,直接的PET/MRI重建是一个非线性问题。我们阐明了多方面的方法如何适应3D PET/MRI重建的混合数据和物理驱动的机器学习,总结了过去5年中重要的深度学习发展,以解决衰减校正,散射,低光子数和数据一致性。我们还描述了这些多模式方法的应用如何超越PET/MRI,以提高放射治疗计划的准确性。最后,我们讨论了遵循物理和深度学习的计算成像和下一代探测器硬件的最新趋势,扩展当前最新趋势的机会。

In this paper, we review physics- and data-driven reconstruction techniques for simultaneous positron emission tomography (PET) / magnetic resonance imaging (MRI) systems, which have significant advantages for clinical imaging of cancer, neurological disorders, and heart disease. These reconstruction approaches utilize priors, either structural or statistical, together with a physics-based description of the PET system response. However, due to the nested representation of the forward problem, direct PET/MRI reconstruction is a nonlinear problem. We elucidate how a multi-faceted approach accommodates hybrid data- and physics-driven machine learning for reconstruction of 3D PET/MRI, summarizing important deep learning developments made in the last 5 years to address attenuation correction, scattering, low photon counts, and data consistency. We also describe how applications of these multi-modality approaches extend beyond PET/MRI to improving accuracy in radiation therapy planning. We conclude by discussing opportunities for extending the current state-of-the-art following the latest trends in physics- and deep learning-based computational imaging and next-generation detector hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源