论文标题
在$γ_0^+(n)$ f level $ n = 1,2,3 $的$γ_0^+(n)$的普通零上
On the common zeros of quasi-modular forms for $Γ_0^+(N)$ of level $N=1,2,3$
论文作者
论文摘要
在本文中,我们研究了Eisenstein系列的迭代衍生物的共同零,以$γ_0^+(n)$ $ n = 1,2 $和$ 3 $,这是准模块形式。更准确地说,我们研究了准模块化形式的常见零,并证明了Eisenstein系列$ \ frac {d^m e_k^{(n)}(n)}(τ)} {dτm} {dτm}的重量$ k = 2,4,6 $ $ k = 2,4,4,6 $(将Meher \ Cite {Meh}和Gun和OesterLé\ Cite \ Cite {SJ20}的结果概括为Sl $ _2(\ Mathbb {Z})$。
In this paper, we study common zeros of the iterated derivatives of the Eisenstein series for $Γ_0^+(N)$ of level $N=1,2$ and $3$, which are quasi-modular forms. More precisely, we investigate the common zeros of quasi-modular forms, and prove that all the zeros of the iterated derivatives of the Eisenstein series $\frac{d^m E_k^{(N)}(τ)}{dτ^m}$ of weight $k=2,4,6$ for $Γ_0^+(N)$ of level $N=2,3$ are simple by generalizaing the results of Meher \cite{MEH} and Gun and Oesterlé \cite{SJ20} for SL$_2(\mathbb{Z})$.