论文标题
阿布拉莫维奇·波兰奇克心脏的过滤和扭转对
Filtrations and torsion pairs in Abramovich Polishchuk's heart
论文作者
论文摘要
我们在阿布拉莫维奇·波兰奇克(Abramovich Plishuk)的心脏中研究了一些亚伯式子类别和扭转对。我们在$ d(x \ timess s)$中的全三角子类别$ \ mathcal {d}^{\ leq 1} _s $上构建稳定条件,对于任意平滑的投影品种。我们还定义了$ l $ l $ - 级别的概念,这是Slope稳定性的总体化,这是slope稳定性和giesekekekekekekeleceer的概述。我们表明,对于Abramovich Polishchuk心脏中的任何对象E,都有一种独特的过滤,其因素为$ l $ the级,并且相位向量正在以词典学顺序减少。
We study some abelian subcategories and torsion pairs in Abramovich Polishchuk's heart. And we construct stability conditions on a full triangulated subcategory $\mathcal{D}^{\leq 1}_S$ in $D(X\times S)$, for an arbitrary smooth projective variety S. We also define a notion of $l$-th level stability, which is a generalization of the slope stability and the Gieseker stability. We show that for any object E in Abramovich Polishchuk's heart, there is a unique filtration whose factors are $l$-th level semistable, and the phase vectors are decreasing in a lexicographic order.