论文标题

使用可解释的深视觉显着区域检测模型对电影心脏血管磁共振图像的心脏覆盖范围的全自动评估

Fully Automated Assessment of Cardiac Coverage in Cine Cardiovascular Magnetic Resonance Images using an Explainable Deep Visual Salient Region Detection Model

论文作者

Nabavi, Shahabedin, Hashemi, Mohammad, Moghaddam, Mohsen Ebrahimi, Abin, Ahmad Ali, Frangi, Alejandro F.

论文摘要

心血管磁共振(CMR)成像已成为一种具有较高能力的心血管疾病和预后的方式。 CMR图像的基本基本质量控制之一是研究完整的心脏覆盖范围,这对于体积和功能评估是必不可少的。这项研究使用3D卷积模型检查了完整的心脏覆盖范围,然后使用创新的显着区域检测模型减少了错误预测的数量。使用三步的算法从短轴Cine CMR堆栈中提取明显区域。将3D CNN基线模型与所提出的显着区域检测模型相结合,提供了一个级联检测器,可以减少基线模型的假阴性数量。在英国生物库人群队列研究的6200多名参与者的图像上获得的结果表明,该模型的优越性超过了先前的最新研究。关于控制心脏覆盖的参与者数量,数据集是最大的数据集。基线模型在识别基础/顶点切片的存在/不存在的准确性分别为96.25 \%和94.51 \%,使用拟议的明显区域检测模型改进后,该模型在改进后增加到96.88 \%和95.72 \%。通过强迫基线模型专注于图像最有用的区域来使用显着区域检测模型可以帮助模型纠正错误分类的样品的预测。提出的全自动模型的性能表明,该模型可用于人群队列数据集中的图像质量控制以及实时成像后质量评估。

Cardiovascular magnetic resonance (CMR) imaging has become a modality with superior power for the diagnosis and prognosis of cardiovascular diseases. One of the essential basic quality controls of CMR images is to investigate the complete cardiac coverage, which is necessary for the volumetric and functional assessment. This study examines the full cardiac coverage using a 3D convolutional model and then reduces the number of false predictions using an innovative salient region detection model. Salient regions are extracted from the short-axis cine CMR stacks using a three-step proposed algorithm. Combining the 3D CNN baseline model with the proposed salient region detection model provides a cascade detector that can reduce the number of false negatives of the baseline model. The results obtained on the images of over 6,200 participants of the UK Biobank population cohort study show the superiority of the proposed model over the previous state-of-the-art studies. The dataset is the largest regarding the number of participants to control the cardiac coverage. The accuracy of the baseline model in identifying the presence/absence of basal/apical slices is 96.25\% and 94.51\%, respectively, which increases to 96.88\% and 95.72\% after improving using the proposed salient region detection model. Using the salient region detection model by forcing the baseline model to focus on the most informative areas of the images can help the model correct misclassified samples' predictions. The proposed fully automated model's performance indicates that this model can be used in image quality control in population cohort datasets and also real-time post-imaging quality assessments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源