论文标题

从部分和嘈杂的观测值中精确的HDDL域学习算法

An Accurate HDDL Domain Learning Algorithm from Partial and Noisy Observations

论文作者

Grand, M., Fiorino, H., Pellier, D.

论文摘要

层次任务网络({\ sf htn})形式主义非常表现力,用于表达各种计划问题。与仅需要指定动作模型的经典{\ sf strips}形式主义相反,{\ sf htn}形式主义需要指定问题的任务及其分解为子任务,称为{\ sf htn}方法。因此,与经典计划问题相比,专家认为手工编码{\ sf htn}问题更困难,更容易出错。为了解决这个问题,我们提出了一种基于语法诱导的新方法(HIERAMLSI),以通过学习动作模型和{\ sf htn}方法获得{\ sf htn}计划域知识,并通过其前提条件获得。与其他方法不同,Hieramlsi能够以高水平或准确的态度学习嘈杂和部分输入观察的动作和方法。

The Hierarchical Task Network ({\sf HTN}) formalism is very expressive and used to express a wide variety of planning problems. In contrast to the classical {\sf STRIPS} formalism in which only the action model needs to be specified, the {\sf HTN} formalism requires to specify, in addition, the tasks of the problem and their decomposition into subtasks, called {\sf HTN} methods. For this reason, hand-encoding {\sf HTN} problems is considered more difficult and more error-prone by experts than classical planning problem. To tackle this problem, we propose a new approach (HierAMLSI) based on grammar induction to acquire {\sf HTN} planning domain knowledge, by learning action models and {\sf HTN} methods with their preconditions. Unlike other approaches, HierAMLSI is able to learn both actions and methods with noisy and partial inputs observation with a high level or accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源