论文标题
关于扭转和torsion和astheno-kähler指标
On cohomological and formal properties of Strong Kähler with torsion and astheno-Kähler metrics
论文作者
论文摘要
我们提供紧凑的hatheno-kählernilmanifolds家族,并研究了这种歧管复杂炸弹的行为。我们证明,无法通过爆炸来保留满足额外差异条件的astheno-kähler指标的存在。我们还研究了强力与扭转指标与几何指标之间的相互作用。我们表明,Fino-Parton-Salamon nilmanifolds是几何底部的旧式形式的,而我们在两份kodaira表面的乘积上获得负面结果,$ \ Mathcal {s}} _m $的inouE表面以及具有InOue表面的Kodaira表面的产物。
We provide families of compact astheno-Kähler nilmanifolds and we study the behaviour of the complex blowup of such manifolds. We prove that the existence of an astheno-Kähler metric satisfying an extra differential condition is not preserved by blowup. We also study the interplay between Strong Kähler with torsion metrics and geometrically Bott-Chern metrics. We show that Fino-Parton-Salamon nilmanifolds are geometrically-Bott-Chern-formal, whereas we obtain negative results on the product of two copies of primary Kodaira surface, Inoue surface of type $\mathcal{S}_M$ and on the product of a Kodaira surface with an Inoue surface.