论文标题
持续学习-AS-A-Service(CLAAS):预测模型的按需有效适应
Continual-Learning-as-a-Service (CLaaS): On-Demand Efficient Adaptation of Predictive Models
论文作者
论文摘要
如今,预测机器学习模型通常以无状态且昂贵的方式进行更新。想要构建基于机器学习的应用程序和系统的公司的两个主要未来趋势是实时推理和持续更新。不幸的是,这两种趋势都需要一个成熟的基础设施,这很难实现本地级。本文定义了一种新颖的软件服务和模型交付基础架构,称为连续学习 - 服务(CLAAS)来解决这些问题。具体而言,它包含持续的机器学习和连续的集成技术。它为数据科学家提供了模型更新和验证工具的支持,而无需实行本地解决方案,并且以高效,陈述和易于使用的方式提供了支持。最后,此CL模型服务易于封装在任何机器学习基础架构或云系统中。本文介绍了在两个现实世界中评估的CLAAS实例化的设计和实现,称为LiquidBrain。前者是使用core50数据集的机器人对象识别设置,而后者是命名类别,并且使用时尚域中的deepfashion-c数据集属性预测。我们的初步结果表明,无论计算在Continuum Edge-Cloud中的何处,连续学习模型服务的可用性和效率以及解决方案在解决现实世界用例中的有效性。
Predictive machine learning models nowadays are often updated in a stateless and expensive way. The two main future trends for companies that want to build machine learning-based applications and systems are real-time inference and continual updating. Unfortunately, both trends require a mature infrastructure that is hard and costly to realize on-premise. This paper defines a novel software service and model delivery infrastructure termed Continual Learning-as-a-Service (CLaaS) to address these issues. Specifically, it embraces continual machine learning and continuous integration techniques. It provides support for model updating and validation tools for data scientists without an on-premise solution and in an efficient, stateful and easy-to-use manner. Finally, this CL model service is easy to encapsulate in any machine learning infrastructure or cloud system. This paper presents the design and implementation of a CLaaS instantiation, called LiquidBrain, evaluated in two real-world scenarios. The former is a robotic object recognition setting using the CORe50 dataset while the latter is a named category and attribute prediction using the DeepFashion-C dataset in the fashion domain. Our preliminary results suggest the usability and efficiency of the Continual Learning model services and the effectiveness of the solution in addressing real-world use-cases regardless of where the computation happens in the continuum Edge-Cloud.