论文标题
在Wiener-Pitt现象上,Rajchman的代数乘数在Hardy Space上
On the Wiener-Pitt phenomenon for algebra of Rajchman multipliers on Hardy space
论文作者
论文摘要
我们表明,Minkowski dimension $ 0 $的任何积极的Rajchman度量都具有非天然频谱,作为$ H^{1} _ {0}(\ t)$的乘数代数的元素。证明是基于对$ H_ {0}^{1}(\ t)$的单数度量给出的卷积运算符规范的估计。
We show that any positive Rajchman measure of Minkowski dimension $0$ has a non-natural spectrum as an element of the multiplier algebra of $H^{1}_{0}(\T)$. The proof is based on the estimation of the norm of the convolution operator given by a singular measure on $H_{0}^{1}(\T)$.