论文标题
通过多时间刻度进行学习行为表示
Learning Behavior Representations Through Multi-Timescale Bootstrapping
论文作者
论文摘要
自然行为由既无法预测的动力学组成,可以突然切换并在许多不同的时间范围内展开。尽管在约束或简化的基于任务的条件下构建行为表示方面已经找到了一些成功,但由于它们假设单一的时间动力学量表,因此许多这些模型无法应用于自由和自然主义的设置。在这项工作中,我们介绍了跨多个尺度(BAMS)的引导程序,这是一个多尺度表示的行为学习模型:我们结合了一个汇总模块,该模块汇总了在具有不同时间接收领域的编码器上提取的特征,并设计了一组潜在的目标,以在各自的空间中引导各个空间,以鼓励各个时机各个时期的分离。我们首先将我们的方法应用于在不同地形类型中导航的四倍的数据集上,并表明我们的模型捕获了行为的时间复杂性。然后,我们将我们的方法应用于MABE 2022多代理行为挑战,在两个子任务中,我们的模型在两个子任务中排名第三,并在分析行为时表明合并多时间尺度的重要性。
Natural behavior consists of dynamics that are both unpredictable, can switch suddenly, and unfold over many different timescales. While some success has been found in building representations of behavior under constrained or simplified task-based conditions, many of these models cannot be applied to free and naturalistic settings due to the fact that they assume a single scale of temporal dynamics. In this work, we introduce Bootstrap Across Multiple Scales (BAMS), a multi-scale representation learning model for behavior: we combine a pooling module that aggregates features extracted over encoders with different temporal receptive fields, and design a set of latent objectives to bootstrap the representations in each respective space to encourage disentanglement across different timescales. We first apply our method on a dataset of quadrupeds navigating in different terrain types, and show that our model captures the temporal complexity of behavior. We then apply our method to the MABe 2022 Multi-agent behavior challenge, where our model ranks 3rd overall and 1st on two subtasks, and show the importance of incorporating multi-timescales when analyzing behavior.