论文标题

2D和3D中磁性湍流的完全动力学剪切盒模拟。 I.配对等离子体

Fully kinetic shearing-box simulations of magnetorotational turbulence in 2D and 3D. I. Pair plasmas

论文作者

Bacchini, Fabio, Arzamasskiy, Lev, Zhdankin, Vladimir, Werner, Gregory R., Begelman, Mitchell C., Uzdensky, Dmitri A.

论文摘要

磁化不稳定性(MRI)是确定天体物理增生盘宏观动力学的基本机制。在无碰撞的吸积周围围绕超质量的黑洞中,MRI驱动的血浆湍流层叠到显微镜(即动力学)尺度会导致增强的角度摩肌的传输和重新分布,非热粒子加速度,以及在具有两倍体状态的电子和离子的两吉特状态。然而,这种微观物理不能使用通常用于研究MRI的标准磁流失动力学(MHD)方法来捕获。在这项工作中,我们探索了一对血浆中MRI湍流的非线性发育,并在两个和三个维度中采用了完全动力学粒子中的粒子(PIC)模拟。首先,我们通过2D模拟彻底研究了轴对称MRI,并解释了2D几何形状如何以及为什么产生与MHD预期有很大不同的结果。然后,我们执行最大的(迄今为止)3D模拟,为此我们采用了一种新型的剪切盒方法,表明3D PIC模型可以在足够大的运行中重现中尺度(即MHD)MRI动力学。通过我们的完全动力学模拟,我们能够描述由无碰撞MRI驱动的非热粒子加速度和角度转运。由于这些显微镜过程最终导致在积聚等离子中排放潜在的可测量辐射,因此我们的工作对于从第一原则中了解当前和将来的观察至外,超出了流体(MHD)模型所施加的局限性,这一点很重要。在第一项研究中,我们将重点放在配对等离子体上以进行简单性,但我们的结果代表了设计更现实的电子离子模拟的重要一步,我们将重点关注未来的工作。

The magnetorotational instability (MRI) is a fundamental mechanism determining the macroscopic dynamics of astrophysical accretion disks. In collisionless accretion flows around supermassive black holes, MRI-driven plasma turbulence cascading to microscopic (i.e. kinetic) scales can result in enhanced angular-momentum transport and redistribution, nonthermal particle acceleration, and a two-temperature state where electrons and ions are heated unequally. However, this microscopic physics cannot be captured with standard magnetohydrodynamic (MHD) approaches typically employed to study the MRI. In this work, we explore the nonlinear development of MRI turbulence in a pair plasma, employing fully kinetic Particle-in-Cell (PIC) simulations in two and three dimensions. First, we thoroughly study the axisymmetric MRI with 2D simulations, explaining how and why the 2D geometry produces results that differ substantially from MHD expectations. We then perform the largest (to date) 3D simulations, for which we employ a novel shearing-box approach, demonstrating that 3D PIC models can reproduce the mesoscale (i.e. MHD) MRI dynamics in sufficiently large runs. With our fully kinetic simulations, we are able to describe the nonthermal particle acceleration and angular-momentum transport driven by the collisionless MRI. Since these microscopic processes ultimately lead to the emission of potentially measurable radiation in accreting plasmas, our work is of prime importance to understand current and future observations from first principles, beyond the limitations imposed by fluid (MHD) models. While in this first study we focus on pair plasmas for simplicity, our results represent an essential step toward designing more realistic electron-ion simulations, on which we will focus in future work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源