论文标题
在不确定性下进行具有成本效益的长期云投资组合分配的优化启发式方法
Optimization Heuristics for Cost-Efficient Long-Term Cloud Portfolio Allocations Under Uncertainty
论文作者
论文摘要
当今的云基础架构景观提供了广泛的服务来构建和操作软件应用程序。但是,无数的选择也带来了新的复杂性。在采购云计算资源方面,消费者可以从不同市场空间上的不同提供商购买其虚拟机,以形成所谓的云投资组合:虚拟机的一堆虚拟机,虚拟机具有不同的技术特征和定价机制。因此,为给定的一组应用程序选择正确的服务器实例,以使分配是经济效率是一项非平凡的任务。在本文中,我们提出了云投资组合管理问题的正式规范,该规范采用了以应用程序为导向的方法,并结合了常见的保留,点播和现货市场类型的细微差别。我们为这个随机时间垃圾箱包装问题提供了两个不同的成本优化启发式方法,一个是采用天真的首先拟合策略,而另一个是基于遗传算法的概念而建立的。评估结果表明,在执行速度和解决方案质量方面,以前的优化方法都大大优于后者。
Today's cloud infrastructure landscape offers a broad range of services to build and operate software applications. The myriad of options, however, has also brought along a new layer of complexity. When it comes to procuring cloud computing resources, consumers can purchase their virtual machines from different providers on different marketspaces to form so called cloud portfolios: a bundle of virtual machines whereby the virtual machines have different technical characteristics and pricing mechanisms. Thus, selecting the right server instances for a given set of applications such that the allocations are cost efficient is a non-trivial task. In this paper we propose a formal specification of the cloud portfolio management problem that takes an application-driven approach and incorporates the nuances of the commonly encountered reserved, on-demand and spot market types. We present two distinct cost optimization heuristics for this stochastic temporal bin packing problem, one taking a naive first fit strategy, while the other is built on the concepts of genetic algorithms. The results of the evaluation show that the former optimization approach significantly outperforms the latter, both in terms of execution speeds and solution quality.