论文标题
使用多型螺旋表示的冠状磁场重建
Reconstruction of Coronal Magnetic Fields Using a Poloidal-Toroidal Representation
论文作者
论文摘要
提出了一种重建冠状磁场作为无力场(FFF)的新方法。我们的方法采用多环形和环形功能来描述无差异磁场。这种磁场表示自然使我们能够以直接的方式实现光电边界的边界条件,即正常磁场和正常电流密度。在电晕的上边界上,可以采用源表面条件,该条件适应底部边界处的磁通量不平衡。尽管我们的迭代算法受到现存的变异方法的启发,但它是非变化的,所需的迭代步骤要比大多数大多数。 Titov&Démoulin(1999)对基于我们新方法的计算代码对分析FFF解决方案进行了测试。发现它在繁殖紧密损伤的通量绳,秃顶和带有双曲线管的准分层层方面表现出色。
A new method for reconstruction of coronal magnetic fields as force-free fields (FFFs) is presented. Our method employs poloidal and toroidal functions to describe divergence-free magnetic fields. This magnetic field representation naturally enables us to implement the boundary conditions at the photospheric boundary, i.e., the normal magnetic field and the normal current density there, in a straightforward manner. At the upper boundary of the corona, a source-surface condition can be employed, which accommodates magnetic flux imbalance at the bottom boundary. Although our iteration algorithm is inspired by extant variational methods, it is non-variational and requires far fewer iteration steps than most of them. The computational code based on our new method is tested against the analytical FFF solutions by Titov & Démoulin (1999). It is found to excel in reproducing a tightly wound flux rope, a bald patch and quasi-separatrix layers with a hyperbolic flux tube.