论文标题

在扩散概率模型中估计最佳协方差使用不完美的平均值

Estimating the Optimal Covariance with Imperfect Mean in Diffusion Probabilistic Models

论文作者

Bao, Fan, Li, Chongxuan, Sun, Jiacheng, Zhu, Jun, Zhang, Bo

论文摘要

扩散概率模型(DPM)是一类强大的深层生成模型(DGM)。尽管它们取得了成功,但整个时间段的迭代生成过程效率要比其他DGM(例如gans)效率要低得多。因此,时间步长上的生成性能至关重要,这受到DPM中协方差设计的极大影响。在这项工作中,我们考虑对角和完整的协方差,以提高DPM的表现力。我们得出此类协方差的最佳结果,然后在DPM的平均值不完美时将其纠正。最佳和校正后的都可以分解为对噪声功能的条件期望的术语。在此基础上,我们建议通过学习这些条件期望来估计最佳协方差及其校正。我们的方法可以应用于离散和连续时间段的DPM。我们在实施计算效率的实施中考虑对角线协方差。为了进行有效的实际实施,我们采用参数共享计划和两个阶段培训过程。从经验上讲,我们的方法的表现优于可能性结果的各种协方差设计,并提高了样本质量,尤其是在少数时间段上。

Diffusion probabilistic models (DPMs) are a class of powerful deep generative models (DGMs). Despite their success, the iterative generation process over the full timesteps is much less efficient than other DGMs such as GANs. Thus, the generation performance on a subset of timesteps is crucial, which is greatly influenced by the covariance design in DPMs. In this work, we consider diagonal and full covariances to improve the expressive power of DPMs. We derive the optimal result for such covariances, and then correct it when the mean of DPMs is imperfect. Both the optimal and the corrected ones can be decomposed into terms of conditional expectations over functions of noise. Building upon it, we propose to estimate the optimal covariance and its correction given imperfect mean by learning these conditional expectations. Our method can be applied to DPMs with both discrete and continuous timesteps. We consider the diagonal covariance in our implementation for computational efficiency. For an efficient practical implementation, we adopt a parameter sharing scheme and a two-stage training process. Empirically, our method outperforms a wide variety of covariance design on likelihood results, and improves the sample quality especially on a small number of timesteps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源