论文标题
在保留差异的同时寻求共同点:多个解剖学协作框架,用于不足的MRI重建
Seeking Common Ground While Reserving Differences: Multiple Anatomy Collaborative Framework for Undersampled MRI Reconstruction
论文作者
论文摘要
最近,深度神经网络具有极大的高级无效磁共振图像(MRI)重建,其中大多数研究都遵循单个解剖学中的一个网络时尚,即,对每个专家网络进行了训练和评估特定解剖结构。除了培训多个独立模型的效率低下之外,此类惯例还忽略了各种解剖学的共享脱张知识,这些知识可以彼此受益。为了探索共享知识,一种天真的方法是将来自各种解剖学的所有数据结合起来,以培训全能网络。不幸的是,尽管存在共同的脱氧知识,但我们透露,不同解剖学的独家知识可能会恶化特定的重建目标,从而导致整体绩效降低。在这项研究中,我们提出了一个新颖的深度MRI重建框架,具有解剖结构和解剖学特异性的参数化学习者,旨在“寻求共同的基础,同时在不同的解剖结构中保持差异”。尤其是主要的解剖学共享,以培训各种型号的解剖学,同时培训各种型号,同时又有富有成就的知识,同时又有效率的既有效率,同时又有成熟的知识。 知识。在两个MRI重建网络中,在我们的框架顶部提出并探索了四种不同特定于解剖学的学习者的实现。关于大脑,膝盖和心脏MRI数据集的全面实验表明,其中三个学习者能够通过多种解剖学协作学习来增强重建表现。
Recently, deep neural networks have greatly advanced undersampled Magnetic Resonance Image (MRI) reconstruction, wherein most studies follow the one-anatomy-one-network fashion, i.e., each expert network is trained and evaluated for a specific anatomy. Apart from inefficiency in training multiple independent models, such convention ignores the shared de-aliasing knowledge across various anatomies which can benefit each other. To explore the shared knowledge, one naive way is to combine all the data from various anatomies to train an all-round network. Unfortunately, despite the existence of the shared de-aliasing knowledge, we reveal that the exclusive knowledge across different anatomies can deteriorate specific reconstruction targets, yielding overall performance degradation. Observing this, in this study, we present a novel deep MRI reconstruction framework with both anatomy-shared and anatomy-specific parameterized learners, aiming to "seek common ground while reserving differences" across different anatomies.Particularly, the primary anatomy-shared learners are exposed to different anatomies to model flourishing shared knowledge, while the efficient anatomy-specific learners are trained with their target anatomy for exclusive knowledge. Four different implementations of anatomy-specific learners are presented and explored on the top of our framework in two MRI reconstruction networks. Comprehensive experiments on brain, knee and cardiac MRI datasets demonstrate that three of these learners are able to enhance reconstruction performance via multiple anatomy collaborative learning.