论文标题

用于学习量子多体系统基础状态的晶格卷积网络

Lattice Convolutional Networks for Learning Ground States of Quantum Many-Body Systems

论文作者

Fu, Cong, Zhang, Xuan, Zhang, Huixin, Ling, Hongyi, Xu, Shenglong, Ji, Shuiwang

论文摘要

深度学习方法已被证明可以有效地表示量子多体系统的地面波函数。现有方法由于其图像样结构而使用卷积神经网络(CNN)进行方格。对于非方格晶格,现有方法使用图形神经网络(GNN),其中未精确捕获结构信息,因此需要其他手工制作的sublattice编码。在这项工作中,我们提出了晶格卷积,其中使用一组建议的操作将非方格晶格转换为网格样的增强晶格,可以在上面应用定期卷积。根据提议的晶格卷积,我们设计了使用自我门控和注意机制的晶格卷积网络(LCN)。实验结果表明,我们的方法在旋转1/2 $ j_1 $ - $ J_2 $ HEISENBERG模型上的旋转方法上的性能或在不使用手工编码的情况下,在Spine 1/2 $ J_1 $ -J_2 $ - $ J_2 $ - HEISENBERG型号上的性能。

Deep learning methods have been shown to be effective in representing ground-state wave functions of quantum many-body systems. Existing methods use convolutional neural networks (CNNs) for square lattices due to their image-like structures. For non-square lattices, existing method uses graph neural network (GNN) in which structure information is not precisely captured, thereby requiring additional hand-crafted sublattice encoding. In this work, we propose lattice convolutions in which a set of proposed operations are used to convert non-square lattices into grid-like augmented lattices on which regular convolution can be applied. Based on the proposed lattice convolutions, we design lattice convolutional networks (LCN) that use self-gating and attention mechanisms. Experimental results show that our method achieves performance on par or better than existing methods on spin 1/2 $J_1$-$J_2$ Heisenberg model over the square, honeycomb, triangular, and kagome lattices while without using hand-crafted encoding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源