论文标题
巨型Rashba电气控制带模型
Giant Rashba electrical control of magnetism in band models
论文作者
论文摘要
实现足够幅度磁性的电气控制的技术重要性是非常重要的。为了克服平面形状各向异性,需要的是垂直磁各向异性(PMA)的电控制。众所周知,在自由电子模型中,Rashba自旋轨道耦合提供了这样的控制。令人惊讶的是,当添加周期性电势时,相同的Rashba PMA将通过两到三个数量级增强。通常,自旋浆果相物理学反映了依赖时间的磁场。在这里显示的是,在一个独立的模型中,由于Rashba有效的磁场在晶胞内具有纹理,因此出现了这种物理学。预测是电气可控的带结构间隙,在应用的电场$ e $中线性,这可能会导致真正的巨型线性PMA。同样可能是PEIERLS机制,其中磁化化从垂直方向倾斜,将这些间隙转移到费米水平。结果,存在低耗散电场驱动动力学,这是较大耗散旋转扭矩转移(STT)效应的替代方法。该理论需要引入固有的自旋连接$ \ vec a_s $,这是有效的向量电位,并且与当前密度功能理论(DFT)不兼容。
It is of considerable technological importance to achieve an electrical control of magnetism of sufficient magnitude. To overcome the in-plane shape anisotropy, needed is the electrical control of a perpendicular magnetic anisotropy (PMA). It is known, within a free electron model, the Rashba spin-orbit coupling provides such a control. Surprisingly, this same Rashba PMA is enhanced by two to three orders of magnitude when a periodic potential is added. Usually spin Berry phase physics reflects time dependent magnetic fields. Here it is shown, within a time independent model, such physics arises because the Rashba effective magnetic field has texture within the unit cell. Predicted are electrical controllable band-structure gaps, linear in the applied electric field $E$, that can result in a truly giant linear PMA. Also possible is a Peierls mechanism, in which the magnetisation tilts from the vertical, shifting these gaps to the Fermi level. As a consequence there are low dissipation electric field driven dynamics, an alternative to the more dissipative spin torque transfer (STT) effect. The theory requires the introduction of an intrinsic spin Berry connection $\vec A_s$, an effective vector potential, and is incompatible with current density functional theories (DFT).