论文标题

使用主观逻辑在混乱中进行单对象跟踪的自我评估

Self-Assessment for Single-Object Tracking in Clutter Using Subjective Logic

论文作者

Griebel, Thomas, Müller, Johannes, Geisler, Paul, Hermann, Charlotte, Herrmann, Martin, Buchholz, Michael, Dietmayer, Klaus

论文摘要

可靠的跟踪算法对于自动驾驶至关重要。但是,现有的一致性措施不足以满足汽车部门日益增长的安全需求。因此,这项工作提出了一种基于卡尔曼过滤和主观逻辑的杂物中单对象跟踪自我评估的新方法。该方法的一个关键特征是,它还提供了在线可靠性评分中收集的统计证据的量度。这样,可靠性的各个方面,例如假定的测量噪声,检测概率和混乱速度的正确性,除了基于可用证据的整体评估外,还可以监视。在这里,我们提出了用于研究问题的自我评估模块中使用的参考分布的数学推导。此外,我们介绍了一个公式,该公式描述了如何为冲突程度选择阈值,这是用于可靠性决策的主观逻辑比较度量。我们的方法在旨在建模不利天气条件的挑战性模拟场景中进行了评估。模拟表明,我们的方法可以显着提高多个方面杂物中单对象跟踪的可靠性检查。

Reliable tracking algorithms are essential for automated driving. However, the existing consistency measures are not sufficient to meet the increasing safety demands in the automotive sector. Therefore, this work presents a novel method for self-assessment of single-object tracking in clutter based on Kalman filtering and subjective logic. A key feature of the approach is that it additionally provides a measure of the collected statistical evidence in its online reliability scores. In this way, various aspects of reliability, such as the correctness of the assumed measurement noise, detection probability, and clutter rate, can be monitored in addition to the overall assessment based on the available evidence. Here, we present a mathematical derivation of the reference distribution used in our self-assessment module for our studied problem. Moreover, we introduce a formula that describes how a threshold should be chosen for the degree of conflict, the subjective logic comparison measure used for the reliability decision making. Our approach is evaluated in a challenging simulation scenario designed to model adverse weather conditions. The simulations show that our method can significantly improve the reliability checking of single-object tracking in clutter in several aspects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源