论文标题
具有输入的非线性系统的LTI Koopman模型的最佳合成
Optimal Synthesis of LTI Koopman Models for Nonlinear Systems with Inputs
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A popular technique used to obtain linear representations of nonlinear systems is the so-called Koopman approach, where the nonlinear dynamics are lifted to a (possibly infinite dimensional) linear space through nonlinear functions called observables. In the lifted space, the dynamics are linear and represented by a so-called Koopman operator. While the Koopman theory was originally introduced for autonomous systems, it has been widely used to derive linear time-invariant (LTI) models for nonlinear systems with inputs through various approximation schemes such as the extended dynamics mode decomposition (EDMD). However, recent extensions of the Koopman theory show that the lifting process for such systems results in a linear parameter-varying (LPV) model instead of an LTI form. As LTI Koopman model based control has been successfully used in practice and it is generally temping to use such LTI descriptions of nonlinear systems, due to the simplicity of the associated control tool chain, a systematic approach is needed to synthesise optimal LTI approximations of LPV Koopman models compared to the ad-hoc schemes such as EDMD, which is based on least-squares regression. In this work, we introduce optimal LTI Koopman approximations of exact Koopman models of nonlinear systems with inputs by using l2-gain and generalized H2 norm performance measures. We demonstrate the advantages of the proposed Koopman modelling procedure compared to EDMD.