论文标题
通勤中心地图,支撑块和{h} opf- {g} alois结构{g} alois扩展
Commutator-central maps, brace blocks, and {H}opf-{G}alois structures on {G}alois extensions
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Let $G$ be a nonabelian group. We show how a collection of compatible endomorphisms $ψ_i:G\to G$ such that $ψ_i([G,G])\le Z(G)$ for all $i$ allows us to construct a family of bi-skew braces called a brace block. We relate this construction to other brace block constructions and interpret our results in terms of Hopf-Galois structures on Galois extensions. We give special consideration to the case where $G$ is of nilpotency class two, and we provide several examples, including finding the maximal brace block containing the group of quaternions.