论文标题

部分可观测时空混沌系统的无模型预测

Sobolev-Orthogonal Systems with Tridiagonal Skew-Hermitian Differentiation Matrices

论文作者

Iserles, Arieh, Webb, Marcus

论文摘要

我们介绍并开发了关于Sobolev内部产品在真实线上的正交性理论,该产品具有三角形,偏斜的分化矩阵的函数序列。尽管已经建立了这种L2-正交系统的理论,但Sobolev正交性需要新的概念及其分析。我们将这种系统完全表征为正交多项式的适当称重的傅立叶变换,并提供了许多说明性示例,其中包括一个sobolev-ottrodonal系统,其领先的N系数可以在$ \ Mathcal {o}(O}(O}(n \ log log n)$操作中计算。

We introduce and develop a theory of orthogonality with respect to Sobolev inner products on the real line for sequences of functions with a tridiagonal, skew-Hermitian differentiation matrix. While a theory of such L2-orthogonal systems is well established, Sobolev orthogonality requires new concepts and their analysis. We characterise such systems completely as appropriately weighed Fourier transforms of orthogonal polynomials and present a number of illustrative examples, inclusive of a Sobolev-orthogonal system whose leading N coefficients can be computed in $\mathcal{O}(N \log N)$ operations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源