论文标题

部分可观测时空混沌系统的无模型预测

Learnable Frequency Filters for Speech Feature Extraction in Speaker Verification

论文作者

Li, Jingyu, Tian, Yusheng, Lee, Tan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Mel-scale spectrum features are used in various recognition and classification tasks on speech signals. There is no reason to expect that these features are optimal for all different tasks, including speaker verification (SV). This paper describes a learnable front-end feature extraction model. The model comprises a group of filters to transform the Fourier spectrum. Model parameters that define these filters are trained end-to-end and optimized specifically for the task of speaker verification. Compared to the standard Mel-scale filter-bank, the filters' bandwidths and center frequencies are adjustable. Experimental results show that applying the learnable acoustic front-end improves speaker verification performance over conventional Mel-scale spectrum features. Analysis on the learned filter parameters suggests that narrow-band information benefits the SV system performance. The proposed model achieves a good balance between performance and computation cost. In resource-constrained computation settings, the model significantly outperforms CNN-based learnable front-ends. The generalization ability of the proposed model is also demonstrated on different embedding extraction models and datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源