论文标题
基于变形金刚的正式和口语捷克的自动语音识别
Transformer-based Automatic Speech Recognition of Formal and Colloquial Czech in MALACH Project
论文作者
论文摘要
捷克语是一种非常特殊的语言,因为它在形式和口语形式之间的差异很大。虽然正式(书面)形式主要用于官方文件,文学和公开演讲,但俗语(口语)形式在随意演讲中被广泛使用。此差距引入了ASR系统的严重问题,尤其是在培训或评估包含大量口语语音(例如Malach Project)的数据集上的ASR模型时。在本文中,根据端到端ASR系统中的新范式,我们正在解决这个问题 - 最近引入了自我监督的音频变压器。具体而言,我们正在研究口语语音对WAV2VEC 2.0模型性能的影响及其直接转录口语演讲的能力。我们在培训成绩单,语言模型和评估笔录中以正式和口语形式提出结果。
Czech is a very specific language due to its large differences between the formal and the colloquial form of speech. While the formal (written) form is used mainly in official documents, literature, and public speeches, the colloquial (spoken) form is used widely among people in casual speeches. This gap introduces serious problems for ASR systems, especially when training or evaluating ASR models on datasets containing a lot of colloquial speech, such as the MALACH project. In this paper, we are addressing this problem in the light of a new paradigm in end-to-end ASR systems -- recently introduced self-supervised audio Transformers. Specifically, we are investigating the influence of colloquial speech on the performance of Wav2Vec 2.0 models and their ability to transcribe colloquial speech directly into formal transcripts. We are presenting results with both formal and colloquial forms in the training transcripts, language models, and evaluation transcripts.