论文标题
部分可观测时空混沌系统的无模型预测
Magnetic memory and spontaneous vortices in a van der Waals superconductor
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Doped Mott insulators exhibit some of the most intriguing quantum phases of matter, including quantum spin-liquids, unconventional superconductors, and non-Fermi liquid metals. Such phases often arise when itinerant electrons are close to a Mott insulating state, and thus experience strong spatial correlations. Proximity between different layers of van der Waals heterostructures naturally realizes a platform for experimentally studying the relationship between localized, correlated electrons and itinerant electrons. Here, we explore this relationship by studying the magnetic landscape of 4Hb-TaS2, which realizes an alternate stack of a candidate spin liquid and a superconductor. We report on a spontaneous vortex phase whose vortex density can be trained in the normal state. We show that time reversal symmetry is broken above Tc, indicating the presence of a magnetic phase independent of the superconductor. Strikingly, this phase does not generate detectable magnetic signals. We use scanning superconducting quantum interference device (SQUID) microscopy to show that it is incompatible with ferromagnetic ordering. The discovery of this new form of hidden magnetism illustrates how combining superconductivity with a strongly correlated system can lead to new, unexpected physics.