论文标题

关于校准模型的不确定性

On Calibrated Model Uncertainty in Deep Learning

论文作者

Ghoshal, Biraja, Tucker, Allan

论文摘要

贝叶斯神经网络中近似后期的估计不确定性易于进行错误校准,这导致关键任务的过度自信预测,而这些预测具有明显的不对称成本或明显的损失。在这里,我们通过在深度学习中校准不确定性后的模型上最大化预期效用,将损失损失的贝叶斯框架的近似推断扩展到基于减肥的贝叶斯神经网络。此外,我们表明,通过损失不确定性所告知的决策可以比直接替代方案更大程度地提高诊断性能。我们提出最大的不确定性校准误差(MUCE)作为测量校准置信度的指标,除了其预测外,特别是对于高风险应用程序,其目标是最大程度地减少误差和估计不确定性之间的最坏情况偏差。在实验中,我们通过将Wasserstein距离作为预测的准确性来显示预测误差与估计不确定性之间的相关性。我们评估了我们从X射线图像中检测COVID-19的方法的有效性。实验结果表明,我们的方法大大减少了错误校准,而不会影响模型的准确性并提高基于计算机的诊断的可靠性。

Estimated uncertainty by approximate posteriors in Bayesian neural networks are prone to miscalibration, which leads to overconfident predictions in critical tasks that have a clear asymmetric cost or significant losses. Here, we extend the approximate inference for the loss-calibrated Bayesian framework to dropweights based Bayesian neural networks by maximising expected utility over a model posterior to calibrate uncertainty in deep learning. Furthermore, we show that decisions informed by loss-calibrated uncertainty can improve diagnostic performance to a greater extent than straightforward alternatives. We propose Maximum Uncertainty Calibration Error (MUCE) as a metric to measure calibrated confidence, in addition to its prediction especially for high-risk applications, where the goal is to minimise the worst-case deviation between error and estimated uncertainty. In experiments, we show the correlation between error in prediction and estimated uncertainty by interpreting Wasserstein distance as the accuracy of prediction. We evaluated the effectiveness of our approach to detecting Covid-19 from X-Ray images. Experimental results show that our method reduces miscalibration considerably, without impacting the models accuracy and improves reliability of computer-based diagnostics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源