论文标题

超越成人和compas:多级预测中的公平性

Beyond Adult and COMPAS: Fairness in Multi-Class Prediction

论文作者

Alghamdi, Wael, Hsu, Hsiang, Jeong, Haewon, Wang, Hao, Michalak, P. Winston, Asoodeh, Shahab, Calmon, Flavio P.

论文摘要

我们考虑为多类分类任务生产公平概率分类器的问题。我们以“投射”预先培训(且潜在的不公平)分类器在满足目标群体对要求的一组模型上的“投射”。新的预测模型是通过通过乘法因子后处理预训练的分类器的输出来给出的。我们提供了一种可行的迭代算法,用于计算投影分类器并得出样本复杂性和收敛保证。与最先进的基准测试的全面数值比较表明,我们的方法在准确性权衡曲线方面保持了竞争性能,同时在大型数据集中达到了有利的运行时。我们还在具有多个类别,多个相互保护组和超过1M样本的开放数据集上评估了我们的方法。

We consider the problem of producing fair probabilistic classifiers for multi-class classification tasks. We formulate this problem in terms of "projecting" a pre-trained (and potentially unfair) classifier onto the set of models that satisfy target group-fairness requirements. The new, projected model is given by post-processing the outputs of the pre-trained classifier by a multiplicative factor. We provide a parallelizable iterative algorithm for computing the projected classifier and derive both sample complexity and convergence guarantees. Comprehensive numerical comparisons with state-of-the-art benchmarks demonstrate that our approach maintains competitive performance in terms of accuracy-fairness trade-off curves, while achieving favorable runtime on large datasets. We also evaluate our method at scale on an open dataset with multiple classes, multiple intersectional protected groups, and over 1M samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源