论文标题
大规模可分因因子发现因子图
Large-Scale Differentiable Causal Discovery of Factor Graphs
论文作者
论文摘要
因果推断的一个共同主题是学习观察到的变量(也称为因果发现)之间的因果关系。考虑到大量候选因果图和搜索空间的组合性质,这通常是一项艰巨的任务。也许出于这个原因,到目前为止,大多数研究都集中在相对较小的因果图上,并具有多达数百个节点。但是,诸如生物学之类的领域的最新进展使生成实验数据集具有数千个干预措施,然后进行了数千个变量的丰富分析,从而增加了机会并迫切需要大型因果图模型。在这里,我们介绍了因子定向的无环图(F-DAG)的概念,是将搜索空间限制为非线性低级别因果相互作用模型的一种方法。将这种新颖的结构假设与最近的进步相结合,弥合因果发现与连续优化之间的差距,我们在数千个变量上实现了因果发现。此外,作为统计噪声对此估计程序的影响的模型,我们根据随机图研究了F-DAG骨架的边缘扰动模型,并量化了此类扰动对F-DAG等级的影响。该理论分析表明,一组候选F-DAG比整个DAG空间要小得多,因此可能更适合作为高维度的搜索空间,在高维度中很难评估基础骨架。我们提出了因子图(DCD-FG)的可区分因果发现,这是可扩展的-DAG约束因果发现,用于高维介入数据。 DCD-FG使用高斯非线性低级结构方程模型,并且与模拟中的最新方法以及最近的大型单细胞RNA测序数据集相比,与最新方法相比显示出显着改善。
A common theme in causal inference is learning causal relationships between observed variables, also known as causal discovery. This is usually a daunting task, given the large number of candidate causal graphs and the combinatorial nature of the search space. Perhaps for this reason, most research has so far focused on relatively small causal graphs, with up to hundreds of nodes. However, recent advances in fields like biology enable generating experimental data sets with thousands of interventions followed by rich profiling of thousands of variables, raising the opportunity and urgent need for large causal graph models. Here, we introduce the notion of factor directed acyclic graphs (f-DAGs) as a way to restrict the search space to non-linear low-rank causal interaction models. Combining this novel structural assumption with recent advances that bridge the gap between causal discovery and continuous optimization, we achieve causal discovery on thousands of variables. Additionally, as a model for the impact of statistical noise on this estimation procedure, we study a model of edge perturbations of the f-DAG skeleton based on random graphs and quantify the effect of such perturbations on the f-DAG rank. This theoretical analysis suggests that the set of candidate f-DAGs is much smaller than the whole DAG space and thus may be more suitable as a search space in the high-dimensional regime where the underlying skeleton is hard to assess. We propose Differentiable Causal Discovery of Factor Graphs (DCD-FG), a scalable implementation of -DAG constrained causal discovery for high-dimensional interventional data. DCD-FG uses a Gaussian non-linear low-rank structural equation model and shows significant improvements compared to state-of-the-art methods in both simulations as well as a recent large-scale single-cell RNA sequencing data set with hundreds of genetic interventions.