论文标题

令牌是一个面具:具有预训练的语言模型的几个名为实体识别

TOKEN is a MASK: Few-shot Named Entity Recognition with Pre-trained Language Models

论文作者

Davody, Ali, Adelani, David Ifeoluwa, Kleinbauer, Thomas, Klakow, Dietrich

论文摘要

对于自然语言处理中的许多任务,将知识从一个领域转移到另一个领域至关重要,尤其是当目标域中的可用数据量受到限制时。在这项工作中,我们在指定实体识别(NER)的背景下提出了一种新颖的域适应方法。我们提出了一种两步方法,该方法由可变基本模块和模板模块组成,该模块在简单的描述模式的帮助下利用了预训练的语言模型中捕获的知识。我们的方法简单而通用,可以在几次射击和零拍设置中应用。评估我们在许多不同数据集中的轻量级方法表明,它可以将最新基准的性能提高2-5%的F1分数。

Transferring knowledge from one domain to another is of practical importance for many tasks in natural language processing, especially when the amount of available data in the target domain is limited. In this work, we propose a novel few-shot approach to domain adaptation in the context of Named Entity Recognition (NER). We propose a two-step approach consisting of a variable base module and a template module that leverages the knowledge captured in pre-trained language models with the help of simple descriptive patterns. Our approach is simple yet versatile and can be applied in few-shot and zero-shot settings. Evaluating our lightweight approach across a number of different datasets shows that it can boost the performance of state-of-the-art baselines by 2-5% F1-score.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源