论文标题

cramér的距离和圆扩展地图的离散化I:理论

Cramér distance and discretizations of circle expanding maps I: theory

论文作者

Guihéneuf, Pierre-Antoine, Monge, Maurizio

论文摘要

本文旨在研究圆形扩展地图的离散化的千古短期行为。更确切地说,我们证明了$ t $ f $ $ f $的$ t $ t $ t $ t $ t $ t $ f $ t $ t $ th $ t $ th y时,当$ n $的网格上,当$ n $上的订单$ n $ the $ n $ t $ t $时,$ t $ t $固定时,$ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $。这是在动力学上的一些显式通用假设下完成的,并且度量之间的距离通过\ emph {cramér}距离的平均值来衡量。该证明是基于对相应线性化问题的研究,在该问题中,该问题被转化为$ t $中尺寸指数的Tori上的等效术语。 与这项工作相关的数值研究在Arxiv:2206.08000 [Math.ds]中提出。

This paper is aimed to study the ergodic short-term behaviour of discretizations of circle expanding maps. More precisely, we prove some asymptotics of the distance between the $t$-th iterate of Lebesgue measure by the dynamics $f$ and the $t$-th iterate of the uniform measure on the grid of order $N$ by the discretization on this grid, when $t$ is fixed and the order $N$ goes to infinity. This is done under some explicit genericity hypotheses on the dynamics, and the distance between measures is measured by the mean of \emph{Cramér} distance. The proof is based on a study of the corresponding linearized problem, where the problem is translated into terms of equirepartition on tori of dimension exponential in $t$. A numerical study associated to this work is presented in arXiv:2206.08000 [math.DS].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源