论文标题

非负矩阵分解的部分可识别性

Partial Identifiability for Nonnegative Matrix Factorization

论文作者

Gillis, Nicolas, Rajkó, Róbert

论文摘要

考虑到非负矩阵分解,$ r $和一个分解等级,$ r $,精确的非负矩阵分解(精确NMF)将$ r $分解为两个非负矩阵的产品,$ c $和$ s $带有$ r $ columss,例如$ r = cs^cs^\ top $。文献中的一个中心研究主题是这种分解是独特/可识别的条件,直到微不足道的歧义。在本文中,我们关注部分可识别性,即$ c $和$ s $的列的独特性。我们从化学计量学文献的基于数据的唯一性(DBU)定理开始研究。 DBU定理分析了确切NMF的所有可行解决方案,并依赖于$ C $和$ S $的稀疏条件。我们提供了最近发布的DBU定理限制版本的数学严格定理,仅依赖于简单的稀疏性和代数条件:它适用于特定的确切NMF解决方案(与所有可行解决方案相反),并允许我们保证$ C $或$ s $ s $的部分独特性。其次,基于对受限制的DBU定理的几何解释,我们获得了新的局部可识别性结果。这种几何解释还使我们在$ r = 3 $的情况下达到了另一个部分可识别性结果。第三,我们展示了如何顺序使用部分可识别性结果,以确保$ c $和$ s $的更多列的可识别性。我们在几个示例中说明了这些结果,包括化学计量学文献的一个示例。

Given a nonnegative matrix factorization, $R$, and a factorization rank, $r$, Exact nonnegative matrix factorization (Exact NMF) decomposes $R$ as the product of two nonnegative matrices, $C$ and $S$ with $r$ columns, such as $R = CS^\top$. A central research topic in the literature is the conditions under which such a decomposition is unique/identifiable, up to trivial ambiguities. In this paper, we focus on partial identifiability, that is, the uniqueness of a subset of columns of $C$ and $S$. We start our investigations with the data-based uniqueness (DBU) theorem from the chemometrics literature. The DBU theorem analyzes all feasible solutions of Exact NMF, and relies on sparsity conditions on $C$ and $S$. We provide a mathematically rigorous theorem of a recently published restricted version of the DBU theorem, relying only on simple sparsity and algebraic conditions: it applies to a particular solution of Exact NMF (as opposed to all feasible solutions) and allows us to guarantee the partial uniqueness of a single column of $C$ or $S$. Second, based on a geometric interpretation of the restricted DBU theorem, we obtain a new partial identifiability result. This geometric interpretation also leads us to another partial identifiability result in the case $r=3$. Third, we show how partial identifiability results can be used sequentially to guarantee the identifiability of more columns of $C$ and $S$. We illustrate these results on several examples, including one from the chemometrics literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源