论文标题
ODE/IM对应关系和超对称仿射TODA场方程
ODE/IM correspondence and supersymmetric affine Toda field equations
论文作者
论文摘要
我们研究了与超对称仿射TODA场方程相关的线性差分系统,该方程具有纯粹的级别级别,该方程具有纯粹的简单根系。对于仿射谎言代数,通过共形转换修改的线性问题导致了一个普通的微分方程(ODE),该方程式(ODE)提供了可集成模型中的功能关系。这被称为ODE/IM对应关系。对于仿射中的超级级别,通过超符号转换修饰的线性方程显示为每个玻色子亚词架的几个ODES。特别是,对于$ osp(2,2)^{(2)} $,相应的ODE成为具有平方电势的二阶ode,这与$ {\ cal n} = 1 $ $ supersympersymmetric Minimals通过ode/im通讯相关。我们还发现具有纯粹奇怪的根系的经典仿射的ODES。
We study the linear differential system associated with the supersymmetric affine Toda field equations for affine Lie superalgebras, which has a purely odd simple root system. For an affine Lie algebra, the linear problem modified by conformal transformation leads to an ordinary differential equation (ODE) that provides the functional relations in the integrable models. This is known as the ODE/IM correspondence. For the affine Lie superalgebras, the linear equations modified by a superconformal transformation are shown to reduce to a couple of ODEs for each bosonic subalgebra. In particular, for $osp(2,2)^{(2)}$, the corresponding ODE becomes the second-order ODE with squared potential, which is related to the ${\cal N}=1$ supersymmetric minimal model via the ODE/IM correspondence. We also find ODEs for classical affine Lie superalgebras with purely odd simple root systems.