论文标题

共形的Schwarzschild指标不能预测平坦的星系旋转曲线

Conformally-rescaled Schwarzschild metrics do not predict flat galaxy rotation curves

论文作者

Hobson, Michael, Lasenby, Anthony

论文摘要

对于在Riemannian时空定义的同型重力理论,并将Schwarzschild-de-Sitter(SDS)度量作为Einstein Gauge中的解决方案,我们可以考虑是否可以将这种解决方案重新降低以获得该解决方案以获得平坦的旋转曲线,例如在星系中观察到的无需深色的旋转曲线。与文献中最新的主张相反,我们表明,如果一个人可以用物理测量的数量来起作用,那么在任何共形框架中,轨迹后跟“普通”物质粒子仅仅是SDS度量的平时地理学,正如人们可能期望的那样。这可以解决物理预测的明显框架依赖性,并明确地产生没有平坦区域的旋转曲线。我们还表明,试图通过在每个星系中单独拟合二次术语的系数来模拟旋转曲线的尝试,因为该系数最自然地解释为与全球宇宙学常数成比例。我们将分析进一步扩展到静态,球体对称的系统之外,以表明粒子动力学对选择的保形框架的不变性对于任意指标的选择也是预期的。此外,我们表明该结论对于在更一般的Weyl-Cartan空间中定义的共同不变的重力理论仍然有效,其中包括Weyl,Riemann--Cartan和Riemannian Pastigimes作为特殊情况。

For conformally invariant gravity theories defined on Riemannian spacetime and having the Schwarzschild--de-Sitter (SdS) metric as a solution in the Einstein gauge, we consider whether one may conformally rescale this solution to obtain flat rotation curves, such as those observed in galaxies, without the need for dark matter. Contrary to recent claims in the literature, we show that if one works in terms of quantities that can be physically measured, then in any conformal frame the trajectories followed by `ordinary' matter particles are merely the timelike geodesics of the SdS metric, as one might expect. This resolves the apparent frame dependence of physical predictions and unambiguously yields rotation curves with no flat region. We also show that attempts to model rising rotation curves by fitting the coefficient of the quadratic term in the SdS metric individually for each galaxy are precluded, since this coefficient is most naturally interpreted as proportional to a global cosmological constant. We further extend our analysis beyond static, spherically-symmetric systems to show that the invariance of particle dynamics to the choice of conformal frame holds for arbitrary metrics, again as expected. Moreover, we show that this conclusion remains valid for conformally invariant gravity theories defined on more general Weyl--Cartan spacetimes, which include Weyl, Riemann--Cartan and Riemannian spacetimes as special cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源