论文标题

基于对抗领域适应的无监督洪水预测的简单基线

A Simple Baseline for Adversarial Domain Adaptation-based Unsupervised Flood Forecasting

论文作者

Chen, Delong, Zhou, Ruizhi, Pan, Yanling, Liu, Fan

论文摘要

洪水灾害造成巨大的社会和经济损失。但是,传统的物理模型和基于学习的洪水预测模型都需要大量的历史洪水数据来训练模型参数。当来到一些没有足够历史数据的新站点时,由于过度拟合,模型性能会大大下降。该技术报告提出了一个洪水域适应网络(Flooddan),这是将无监督域适应(UDA)应用于洪水预测问题的基准。具体而言,洪水的培训包括两个阶段:在第一阶段,我们训练降雨编码器和一个预测头,以了解有关大规模源域数据的一般可转移的水文知识;在第二阶段,我们通过对抗结构域的比对将验证编码器中的知识转移到目标域的降雨编码器中。在推断期间,我们利用了在第二阶段接受训练的目标域降雨编码器,并在第一阶段进行了预测头,以获得洪水预测的预测。 Tunxi和Changhua洪水数据集的实验结果表明,Flooddan可以通过零目标域监督有效地进行洪水预测。 Flooddan的性能与使用450-500小时的监督的监督模型相当。

Flood disasters cause enormous social and economic losses. However, both traditional physical models and learning-based flood forecasting models require massive historical flood data to train the model parameters. When come to some new site that does not have sufficient historical data, the model performance will drop dramatically due to overfitting. This technical report presents a Flood Domain Adaptation Network (FloodDAN), a baseline of applying Unsupervised Domain Adaptation (UDA) to the flood forecasting problem. Specifically, training of FloodDAN includes two stages: in the first stage, we train a rainfall encoder and a prediction head to learn general transferable hydrological knowledge on large-scale source domain data; in the second stage, we transfer the knowledge in the pretrained encoder into the rainfall encoder of target domain through adversarial domain alignment. During inference, we utilize the target domain rainfall encoder trained in the second stage and the prediction head trained in the first stage to get flood forecasting predictions. Experimental results on Tunxi and Changhua flood dataset show that FloodDAN can perform flood forecasting effectively with zero target domain supervision. The performance of the FloodDAN is on par with supervised models that uses 450-500 hours of supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源