论文标题

部分可观测时空混沌系统的无模型预测

Concentration of Data Encoding in Parameterized Quantum Circuits

论文作者

Li, Guangxi, Ye, Ruilin, Zhao, Xuanqiang, Wang, Xin

论文摘要

变异量子算法已被认为是在有意义的任务中实现近期量子优势的领先策略,包括机器学习和组合优化。当应用于涉及经典数据的任务时,这种算法通常从用于数据编码的量子电路开始,然后训练量子神经网络(QNN),以最大程度地减少目标函数。尽管已经广泛研究了QNN,以提高这些算法在实际任务上的性能,但系统地了解编码数据对最终性能的影响存在差距。在本文中,我们通过考虑基于参数化量子电路的常见数据编码策略来填补这一空白。我们证明,在合理的假设下,平均编码状态与最大混合状态之间的距离可以明确地相对于编码电路的宽度和深度。该结果特别意味着平均编码状态将以指数速度的深度速度集中在最大混合状态上。这样的浓度严重限制了量子分类器的功能,并严格限制了从量子信息的角度限制编码状态的区分性。我们通过在合成和公共数据集上验证这些结果来进一步支持我们的发现。我们的结果突出了机器学习任务中量子数据编码的重要性,并可能阐明未来的编码策略。

Variational quantum algorithms have been acknowledged as a leading strategy to realize near-term quantum advantages in meaningful tasks, including machine learning and combinatorial optimization. When applied to tasks involving classical data, such algorithms generally begin with quantum circuits for data encoding and then train quantum neural networks (QNNs) to minimize target functions. Although QNNs have been widely studied to improve these algorithms' performance on practical tasks, there is a gap in systematically understanding the influence of data encoding on the eventual performance. In this paper, we make progress in filling this gap by considering the common data encoding strategies based on parameterized quantum circuits. We prove that, under reasonable assumptions, the distance between the average encoded state and the maximally mixed state could be explicitly upper-bounded with respect to the width and depth of the encoding circuit. This result in particular implies that the average encoded state will concentrate on the maximally mixed state at an exponential speed on depth. Such concentration seriously limits the capabilities of quantum classifiers, and strictly restricts the distinguishability of encoded states from a quantum information perspective. We further support our findings by numerically verifying these results on both synthetic and public data sets. Our results highlight the significance of quantum data encoding in machine learning tasks and may shed light on future encoding strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源